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We perform a multi-scale non-local geometrical analysis of the structures extracted
from the enstrophy and kinetic energy dissipation-rate, instantaneous fields of a
numerical database of incompressible homogeneous isotropic turbulence decaying in
time obtained by DNS in a periodic box. Three different resolutions are considered:
2563, 5123 and 10243 grid points, with k.77 approximately 1, 2 and 4, respectively,
the same initial conditions and Re; ~ 77. This allows a comparison of the geometry of
the structures obtained for different resolutions. For the highest resolution, structures
of enstrophy and dissipation evolve in a continuous distribution from blob-like and
moderately stretched tube-like shapes at the large scales to highly stretched sheet-
like structures at the small scales. The intermediate scales show a predominance of
tube-like structures for both fields, much more pronounced for the enstrophy field.
The dissipation field shows a tendency towards structures with lower curvedness than
those of the enstrophy, for intermediate and small scales. The 256 grid resolution
case (k.. ~ 1) was unable to detect the predominance of highly stretched sheet-like
structures at the smaller scales in both fields. The same non-local methodology for
the study of the geometry of structures, but without the multi-scale decomposition,
is applied to two scalar fields used by existing local criteria for the eduction of
tube- and sheet-like structures in turbulence, Q and [A;;];, respectively, obtained
from invariants of the velocity-gradient tensor and alike in the 1024° case. This adds
the non-local geometrical characterization and classification to those local criteria,
assessing their validity in educing particular geometries. Finally, we introduce a new
methodology for the study of proximity issues among structures of different fields,
based on geometrical considerations and non-local analysis, by taking into account
the spatial extent of the structures. We apply it to the four fields previously studied.
Tube-like structures of Q are predominantly surrounded by sheet-like structures of
[A;;]+, which appear at closer distances. For the enstrophy, tube-like structures at
an intermediate scale are primarily surrounded by sheets of smaller scales of the
enstrophy and structures of dissipation at the same and smaller scales. A secondary
contribution results from tubes of enstrophy at smaller scales appearing at farther
distances. Different configurations of composite structures are presented.
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1. Introduction

The analysis of the rotation- and strain-rate tensor fields, and their scalar coun-
terparts, enstrophy and kinetic energy dissipation, has been recurrent in the study
of turbulence through experiments (e.g. Zeff et al. 2003), numerical simulations (e.g.
Ishihara et al. 2003) and theoretical developments (e.g. Pullin & Saffman 1997; He
et al. 1998; Wu, Zhou & Fan 1999). Physically, enstrophy and dissipation correspond
to the remaining Galilean-invariant degrees of freedom of fluid particles, rotation
and strain, once the dilatation is restricted for incompressible flows. This separation
is useful, but it does not decouple the equations of fluid motion. On the contrary,
both fields appear in the equations describing the dynamics of each other (Horiuti &
Fujisawa 2008). In fact, the interaction between strain and rotation is intrinsic to the
very nature of a three-dimensional turbulence, in particular, vortex-stretching occurs
when the strain-rate field stretches and amplifies vorticity.

Turbulence is inherently multi-scale. In the traditional view (Richardson 1922),
eddies of large scales break up into smaller ones until viscous effects are dominant
and dissipate the energy injected at larger scales. This results in an energy cascade
(Richardson 1926; Kolmogorov 1941a,b; Onsager 1945). A complete study of
turbulence requires, both in experiments and in numerical simulations, a spatial
resolution that resolves the flow up to dissipation scales. A traditional grid resolution
criterion used in direct numerical simulations (DNS) of homogeneous turbulence in
a periodic box, for example, consists in resolving the flow up to scales of the order of
the (average) Kolmogorov scale.

But turbulence is also known to show intermittency (Batchelor & Townsend 1949;
Landau & Lifshitz 1959; Kolmogorov 1962): fluctuations of flow quantities can reach
extreme amplitudes in short intervals of time and spatial distances. Furthermore,
fluctuations of different amplitudes tend to cluster. Intermittency increases for higher
Reynolds numbers (Okamoto et al. 2007) and also for smaller scales (Brasseur &
Wang 1992). This suggests that the traditional grid resolution criterion, based on
an average dissipation scale, might be inappropriate, since much smaller scales are
locally present due to those high fluctuations. Therefore, the resolution required to
resolve all scales of turbulent flows increases significantly (see Sreenivasan 2004 ).

These three intimately related properties of turbulence (strain—rotation interaction,
multi-scale energy cascade and intermittency) shape the contents of this paper,
explored under a geometrical perspective. An interesting example of the geometrical
relations between rotation- and strain-rate fields is the local alignment of the vorticity
with the intermediate strain-rate eigendirection, for incompressible homogeneous
isotropic turbulence. It was observed first in numerical simulations (Ashurst et al.
1987) and confirmed experimentally (see Tsinober, Kit & Dracos 1992; Tao, Katz
& Meneveau 2000). Theoretical explanations combine local and non-local arguments
(see Jiménez 1992; Nomura & Post 1998; Hamlington, Schumacher & Dahm 2008).
This geometrical property of turbulence has been utilized in the development of
subgrid-scale models for use in numerical simulations.

We focus on a different geometrical aspect of those relations, which is structure
based. Methods for the identification of structures in turbulence can be divided into
local or non-local, attending to whether the classification of the educed structures
considers their spatial extent. Local methods are commonly based on scalar fields
derived from invariants of the velocity-gradient tensor or related tensors, that highlight
certain physical aspects associated with a particular structure either of turbulent flows
or of simpler solutions of the Navier—Stokes equations whose phenomenology is
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extrapolated to turbulence (e.g. Burgers vortex tubes and sheets). Points are classified
as belonging to one type of structure according to the local value of the field (e.g.
by thresholding). Then, points of a common class can optionally be used to define
structures with a spatial extent, but this is done as a secondary step, after the point
has been already classified. Examples of local methods are the Q-criterion (Hunt,
Wray & Moin 1988) and the 4, method (Jeong & Hussain 1995) used to educed
vortex tubes. Non-local methods, however, first define the regions of space that are
later classified based on geometrical properties of the structure, considering its spatial
extent. Geometrical conclusions are then drawn for the set of educed structures.
Examples are the calculation of the fractal dimension of a set of iso-surfaces of a
particular scalar field by box-counting methods (Moisy & Jiménez 2004) and the
study of the linear distances of regions formed by an ensemble of grid cells from
which the same pair of extremal points of the scalar field is reached (Wang & Peters
20006).

‘Tubes’ and ‘sheets’ have been considered the structural geometric building blocks of
turbulence. The majority of identification methods (local and non-local) are devoted
to educing those types of structures. Traditionally, more attention has been paid to
tube-like structures, but recently considerable interest has put forward the eduction
of sheet-like structures (see, for example, Tanaka & Kida 1993; Horiuti 2001). Local
methods targeted at educing tubes and sheets, based on physical principles, resort
often to visualization of the regions of joined classified points to assess the geometrical
character of those regions. Thus, those local methods could use non-local ones
to verify qualitatively and be able to quantify the presence of those anticipated
geometries.

The dynamics of sheets and tubes are greatly affected by their own interactions,
such as the coalescence and reconnection of approaching vortex tubes and the roll-up
of vortex sheets to form vortex tubes resulting from the Kelvin—Helmholtz instability.
These interactions among sheets and tubes can be seen as the translation of the strain-
rotation interaction itself to the structural level of turbulence, and help explain the
presence of intermittency and the process of multi-scale energy cascade in turbulence
(see Kraichnan 1974; Goto 2008). This has led to the development of models of
the fine structure of turbulence that account for this structure interaction, such as the
strained-spiral vortex model (Lundgren 1982), and later to subgrid-stress models that
can be used in numerical large-eddy simulations (LES) of turbulent flows (Misra &
Pullin 1997). Some geometrical aspects of these interactions among structures have
also been studied. For example, the prevailing alignment between vorticity and the
intermediate eigendirection of the strain-rate tensor is observed to switch towards
the direction associated with the most negative eigenvalue of the strain-rate tensor at
the ends of tube-like structures (Nomura & Post 1998), consistent with the compressive
straining of the vorticity occurring in those regions. For the incompressible flow,
the trace of the strain-rate tensor is null, ensuring at least one positive and one
negative eigenvalue of that tensor. Other geometrical analyses regarding the proximity
of different types of structures, in relation to their shapes, could be useful in explaining
further those interactions and also improve structure-based models of the fine scales
of turbulence.

In this paper, we use a numerical database of incompressible homogeneous isotropic
turbulence obtained by DNS. In §2, we perform a multi-scale study of the geometry
of educed structures of enstrophy and dissipation-rate fields, comparing the results
of both fields. For that purpose, we use the methodology introduced in Bermejo-
Moreno & Pullin (2008), henceforth referred to as BP, consisting in three main
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N v Re; (K) (&) L i (X107) ke

256% 0.00138 77.2 0.900 0.654 0.469 0.138 8.00 1.02
5123 0.00138 76.87 0.897 0.654 0.469 0.137  8.00 2.05
1024  0.00138 77.43 0.904 0.654 0.468 0.138 8.00 4.09

TaBLE 1. Parameters for the computed cases: grid points, N; kinematic viscosity, v;
Taylor-microscale Reynolds number, Re;; average kinetic energy, (K); average dissipation
rate, (€); integral length scale, L; Taylor microscale, /; average Kolmogorov length, 7; grid
resolution criterion, k.7 (Where k., is the largest dynamically significant wavenumber).
From HF.

steps: extraction, characterization and classification of structures. The extraction
includes a multi-scale decomposition of the field. The geometrical characterization
is based on differential geometry properties, and considers the spatial extent of the
structures. The classification step is aided by clustering techniques. The database
includes three different grid resolutions, allowing us to study how this parameter
affects the geometry of educed structures and the validity of the traditional grid
resolution criterion in DNS from a geometrical standpoint. In §3, we combine the
non-local methodology with two local criteria of identification of vortex tubes and
sheets in turbulence (Horiuti & Takagi 2005) that are based on scalar fields obtained
from the velocity-gradient tensor. An assessment of the geometries expected from
those local criteria is done. In §4, we introduce a new methodology for the study
of the proximity of structures obtained from two different fields, also in terms of
geometry and based on non-local measures through area-coverage quantification. We
apply this methodology to the pairs of two scalar fields used by the local identification
criteria in §3 and to the enstrophy and dissipation-rate fields, considering the multi-
scale decomposition performed in § 2.

2. Geometry of structures of w;w; and S;;5;;

The numerical database used here is that of Horiuti & Fujisawa (2008), henceforth
referred to as HF. It corresponds to a DNS of incompressible homogeneous isotropic
turbulence decaying in time in a cubic domain of side length 2w, with periodic
boundary conditions. We use runs corresponding to 256°, 512° and 1024° grid points
with the same value of the kinematic viscosity, v, resulting in a similar Taylor-
microscale Reynolds number, Re; ~77, and in grid resolution criteria, k.7, of
approximately 1, 2 and 4, respectively. Moreover, the initial conditions are the same
for the three runs, and therefore, they can be used to compare the geometry of flow
structures at different resolutions. Additional parameters for each run at the instant
of maximum enstrophy are shown in table 1, extracted from HF, where more details
of the computational method can be obtained. The three velocity fields at this time
instant for the three grid resolutions are the database for the present study.

In this section, we apply the methodology proposed in BP for the study of the
geometry of structures in turbulence to the enstrophy and dissipation fields. Local
enstrophy is defined as w;w;, while local dissipation is defined as € = 2vS§;;S;;.
S;; is the strain-rate tensor and w; is the vorticity field, which is related to the
rotation-rate tensor, £2;;, by £2;; =—€;jxwi/2, € being the Levi-Civita symbol.
Thus, w;w; =22;;§2;;. Strain- and rotation-rate tensors are obtained from the
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velocity-gradient tensor, du;/dx;, as

_ 1 au,- Buj _ 1 aui auj
Sl _2<8xj+8xi)’ Ql]_2<3xj Bx,')' (21)

We will consider the dissipation rescaled by (2v)~!, that is, S; S
From the velocity field in Fourier space, # .7 (u;), we first compute # 7 (w;;) and
F T (Sij) with spectral resolution. Then the discrete inverse Fourier transform is
applied to obtain w; and §;; in physical space, where the products w;w; and S;;S;;
are computed. This product operation in physical space introduces aliasing errors in
both w;w; and S;;S;;, that could have an influence in the geometry of the structures,
particularly at the smaller scales of each resolution. To evaluate this effect, we also
computed dealiased w;w; and S;;S;; fields, removing the aliasing error by means of
the 3/2-rule. Both aliased and dealiased data were compared, and we did not find
the influence of aliasing error to be significant in our geometrical results, in this case.
This comparison is presented in Appendix A. The results presented in the main text
of the manuscript correspond to the aliased w;w; and S;;S;;fields. Note that during the
computation of the velocity field, u;, by the Fourier pseudo-spectral method, aliasing

errors were removed (see HF).

2.1. Description of the methodology

In summary, the methodology is applied to a scalar three-dimensional field (in this
case, w;w; and S;;S;;, independently) at a given instant in time (here, the instant
of maximum enstrophy of the DNS) and consists of three main steps: extraction,
characterization and classification of structures. The extraction begins with a multi-
scale decomposition of the scalar field by means of the discrete curvelet transform
(see Candes et al. 2005), which provides a finite set of component fields, associated
with the different scales present in the original field. Only the sub-band radial filtering
in Fourier space is used in this case, for being the field isotropic. Thus, the multi-
orientation decomposition provided by the curvelet transform is not used in this
particular application. It can be of particular interest in the study of anisotropic
fields. Then iso-surfaces are obtained for each component field. For periodic domains,
as we have presently, those structures intersecting opposite boundaries are reconnected
with their periodic continuation.

The characterization of the extracted structures is done in terms of the area-based
joint probability density function (jpdf) of two differential-geometry properties (see
Koenderink & van Doorn 1992): the absolute value of the shape index, S, and a non-
dimensionalization of the curvedness, C, plus the dimensionless stretching parameter
/. Essentially, S and C are, up to scaling factors, polar coordinates in the Cartesian
space of the surface principal curvatures (k, 3)

2 2 2
S = ‘_n arctan (W> , C=puy/ % (2.2)

K1 — K>
where © = 3V/A, V and A are the volume and area, respectively, of the closed
surface. 4 is defined as

2/3
L= 3361tVT (2.3)

and equals unity for a sphere. The jpdf, #(S, C), and 1 define the geometrical signature
of the structure.
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FIGURE 1. Projections of the visualization space with the predominantly blob, tube and
sheet-like regions sketched: three-dimensional perspective projection (a), two-dimensional
orthogonal prO]CCthIlS (b) of the planes B (formed by the axes C and A) and « (formed
by § and C) An example of a glyph consisting of a sphere and four bars along the +8,
+C axes can represent nine parameters of the characterization of the corresponding structure:
S, C, 2 given by the centre of the sphere, upper and lower distances of S and C given by each
bar, the surface area A of the associated structure, given by the size of the glyph, and the
group to which the structure belongs, given by the colour of the glyph (from BP).

The classification step uses a contracted computational s1gnature consisting of the
feature centre (8, C) and the upper and lower distances {d?, dS,dS,dC} of 2(S, C),
defined (see Appendix C of BP) in terms of its first- and second-order moments, plus
the stretchmg parameter, 4. A three-dimensional visualization space with coordinates
(S C, A) is defined to represent the geometry of individual structures by means of
glyphs. In this application, glyphs are chosen as simple spheres with centre given by
(S, C, 4), and whose size and colour correspond to other features of the structure they
represent, such as surface area and scale number. More complex glyphs can be chosen
to represent additional parameters of the surface. In the visualization space, blob-like
structures are located near the region (S C, A)=~(1,1,1); tube-like structures tend
to concentrate near the axis (S C, M= (1/2,1,4) (more stretched for smaller values
of 1), while sheet-like structures present small values of both C and 1. See figure 1
for a representation of the visualization space and the limiting geometries (refer
to Appendix D of BP for the basis of the location of these limiting geometries).
In addition, clustering techniques are applied in a feature space formed by those
parameters defining the contracted signature, to educe groups of structures with
distinct geometries. Results can also be plotted in the visualization space. This
methodology is described in detail in BP.

2.2. Multi-scale decomposition

We plot in figure 2 the volume probability density functions (pdfs) (a) and the spectra
(b), in Fourier space, of the two fields, w;w; and S§;;S;;, for the three grid resolutions
(2563, 512° 1024%). It can be observed that the pdf of w;w; has longer tails than that
of S;;S;;. This indicates that large amplitude events in the enstrophy field are more
prevalent than in the dissipation field (see Chen, Sreenivasan & Nelkin 1997), and
thus, that w;w; is more intermittent than S;;S;;, which is in agreement with results
from experiments (Zeff et al. 2003) and numerical simulations (Siggia 1981; Kerr
1985; Chen et al. 1997), using the flatness of each field to measure its intermittency.
The discrepancy in the spectra of w;w; and §;;S;; increases with the wavenumber, k,
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FIGURE 2. Volume pdfs in physical domain (a) and S})ectra in Fourier domain (b) of w;w; and
S;;S;; fields for the three grid resolutions (256°, 512° and 1024%). Note that the volume pdfs
use a transformation of the form sign(x)log(1+ |x|) in the abscissa coordinate, and that curves
for w;w; and S;;S;; fields use two different vertical axes (both in the pdfs and the spectra),
shifted one decade for a clear view (non-intersecting curves).

FIGURE 3. Tri-plane cuts of w;w; and its multi-scale component fields for the 5123 case.

that is, for smaller scales. This is also in agreement with the results from numerical
simulations at higher Reynolds numbers of Ishihara et al. (2003), who found that the
maximum difference between spectra of w;w; and S;;S;; peaks at kij ~0.4.

Figure 3 shows the effect in physical space of the multi-scale decomposition for
w;w; with 512% grid points, as an example, through plane cuts in the three principal
directions of the cubic domain. The original field, containing all scales, is plotted on
the top left corner. The rest correspond to each scale number and are obtained after
filtering in curvelet domain, returning to physical space.

Volume pdfs (physical domain) and spectra (Fourier domain) of the original and
component fields after the multi-scale decomposition are shown in figure 4, for w;w;
(a) and S;;S; (b) fields in the 1024° case. Scales are named by scale numbers from
0 to 7. Increasing scale numbers, when referred to the component fields in which
the original field is decomposed, indicate smaller scales. Thus, 0 corresponds to the
largest scale, and 1, 2,... correspond to smaller and smaller scales. For the 256 and
5123 cases, similar plots (not shown) can be obtained with 5 and 6 as the maximum
scale numbers, respectively. Note how, for both w;w; and S;;S;;, the range of the pdfs
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Field Original Scale 0 1 2 3 4 5 6 7

w; w; 5.0 41.67 20.83 9.62 4.81 2.60 1.36 0.76 0.41
SiiSi; 2083 41.67 2083 1042 521 2.66 137 0.71 0.40

TaBLE 2. Wavelength at which the spectra of the original fields (w;w; and S;;S;;) and each
of their component fields (corresponding the each scale number, after filtering in curvelet
domain) reach their maxima (1/kpeq), for the 1024° case. Each wavelength has been
non-dimensionalized with the average Kolmogorov scale 1/kpear?).
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FIGURE 4. Effect of the multi-scale decomposition in the 10243 case for w;w; (a) and SiiSij
(b) fields on the volume pdfs in physical domain (left) and on the spectra in Fourier domain
(right). Note that the volume pdfs have been shifted vertically to accommodate all scales and
the original fields in a clearer view. Also, instead of using a log-scale in the abscissa of the
pdf plots, since there are negative values for all filtered scales, a transformation of the form
sign(x)log(1 + |x]) is used for each field x.

increases for increasing scale number (i.e. smaller scales), indicating that fluctuations
of both fields are higher in the small scales, and therefore, that intermittency also
increases for those smaller scales. Previous multi-scale studies of turbulence have
shown this property (Kennedy & Corrsin 1961; Meneveau 1991; Brasseur & Wang
1992; Okamoto et al. 2007). Table 2 shows, for the original fields (w;w; and S;;S;;)
containing all scales and for each individual scale, in the 1024° case, the wavelength at



Geometry of enstrophy and dissipation in turbulence 129

@ | NN
L %) .‘-- \/_' ._"‘ \

.?‘" - f‘ \ it ;.r
,4"/‘72 5?‘“ ')7 5':\‘

U 2 f'ﬂoﬁ-f' A
) \/.)l (1 K>3 7 ,3)
?,\ /r"\ '/\"‘f(kt‘j
- i’ lﬁ.y? | N\e

, BAEZ \ ’\ )

- s ) ‘ ./

SR v“
'\ \i/, ' ZE

~, ,jo'
,ﬁ' N

FIGURE 5. Plane cuts of w;w; (a) and S;;S;; (b) normal to one of the principal directions of
the cubic domain at half its side length for the 1024 case.
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FIGURE 6. Zoomed parts of plane cuts of w;w; (a) and S;;S;; (b) in one of the principal
directions of the cubic domain at half its side length for the three grid resolutions 256° (left),
5123 (centre) and 1024° (right). Greyscale has been renormalized to the zoomed region for
better clarity.

which the corresponding spectrum reaches its maximum value, non-dimensionalized
with the average Kolmogorov scale.

Figure 5 includes plane cuts of w;w; (a) and S;;S;; (b) fields, for the 1024°, at half
the length of the physical domain in one of the principal directions of the cube.
Zoomed parts of those plane cuts are shown in figure 6 for the three grid resolutions
(256%, 512 and 1024° from left to right) for both w;w; (a) and S;;S;; (b) fields. It can
be observed that, particularly in the 256° case, the smallest scales are quite different
from the higher-resolution cases. Figure 7 shows zoomed parts of the plane cuts
corresponding to the component field at scale number 5 for the three grid resolutions,
which is the highest scale number attainable in the multi-scale decomposition of the
256° case, and therefore, contains the structures at the smallest scales captured in this
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0243

FIGURE 7. Zoomed parts of plane cuts of component field at scale number 5 for w;w;
(a) and S;;S;; (b) in one of the principal directions of the cubic domain at half its side

length for the three grid resolutions 256° (left), 512° (centre) and 10243 (right). Greyscale has
been renormalized to the zoomed region for better clarity.

flow at that grid resolution. It is clear from the two-dimensional fields that structures
educed with the lowest grid resolution 256* can be significantly different from the ones
at higher grid resolutions, 512° and 1024°. Intuitively, a geometrical characterization
of those structures would be affected by that fact, and its effect would be noticed in
the application of the methodology proposed above.

2.3. Characterization and classification of individual structures

In figure 8, we present the three-dimensional visualization spaces (formed by S,C, 2
axes) with the glyphs (simple spheres in this case) representing each structure after
its geometrical characterization. The top row corresponds to w;w; and the bottom
row to S;;S;; for increasing grid resolution (256°, 512° and 1024°) from left to right.
The spheres are scaled by the lognormalized area of the corresponding structure. The
colour of each sphere represents the scale number to which it belongs. As in BP,
the largest scale is not included in the analysis for being strongly dependent on the
boundary and initial conditions. Neither is the smallest scale (for each grid resolution)
to avoid interference between grid resolution effects and the iso-contouring process.
The fact that we have three different grid resolutions for the equivalent field allows us
to verify whether that interference occurs. This is discussed at the end of §2.4. Thus,
scales 1-4, 1-5 and 1-6 are represented for the 2567, 512° and 1024’ grid resolutions,
respectively. Top views (S—C plane) of these visualization spaces are shown in figure 9,
where the differences between w;w; and §;;S;; fields can be better realized.

In figure 10, we show the breakdown by increasing scale number (top to bottom)
of the three-dimensional visualization spaces for the w;w; field for the three grig
resolutions (256°, 5123 and 1024%), increasing from left to right. Top views (§-C
plane) of each visualization space can be seen in figure 11. Figures 12 and 13 are
the equivalent ones for §;;S;;. Figure 14 shows the number of structures analysed
for each grid resolution and scale number (i.e. the number of glyphs represented in
figures 10-13).
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FIGURE 8. Three-dimensional views of the visualization spaces, with glyphs (spheres)
representing educed structures, coloured by scale number — @ (1), » (2), » (3),  (4), »
(5), ® (6) — and scaled by the lognormalized area of the corresponding structure, for w;w; (a)
and S;;S;; (b) at 2563 (left), 5123 (centre) and 1024° (right) grid resolutions.
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FIGURE 9. Top views (3‘—6‘ plane) of the visualization spaces, with glyphs (spheres) representing
educed structures, coloured by scale number — @ (1), » (2), » (3),  (4), ® (5), ® (6) — and
scaled by the lognormalized area of the corresponding structure, for w;w; (a) and S;;S;; (b) at
2563 (left), 5123 (centre) and 1024° (right) grid resolutions.
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256 5123 10247

FiGUure 10. Breakdown, by scale number (increasing top to bottom), of three-dimensional
views of the visualization spaces for w;w; at 256° (a), 512° (b) and 10243 (c) grid resolutions.
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FiGure 11. Breakdown, by scale number (increasing top to bottom), of top views (S‘—é
plane) of the visualization spaces for w;w; at 256% (a), 512° (b) and 10243 (c) grid resolutions.



134 1. Bermejo-Moreno, D. I. Pullin and K. Horiuti

256° 5123 10243

FIGURE 12. Breakdown, by scale number (increasing top to bottom), of three-dimensional
views of the visualization spaces for S;;S;; at 256* (a), 512° (b) and 1024° (c) grid resolutions.
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FIGURE 13. Breakdown, by scale number (increasing to? to bottom), of top views (3‘—@ plane)
of the visualization spaces for S;;S;; at 256° (a), 512° (b) and 10243 (c) grid resolutions.
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FIGURE 14. Number of structures analysed for each grid resolution and scale number.

We first discuss the case with the highest resolution (1024%). Structures of both
w;w; and §;;S;; fields show a continuous transition of their corresponding glyphs
in the visualization space, with varying scale (see right plots of figures 8 and 9).
Structures at the largest scale of both fields (top right corner of figures 10 and 12)
are mainly blob-like; some get closer to the tube-like region with small stretching
(high 4). At the smallest scale (bottom right corner of figures 10 and 12), dominant
structures of both fields are sheet-like (low values of C and A). The intermediate
scales present a different behaviour for each field: w;w; shows a high concentration
of structures near the tube-like region (see scale numbers 3 and 4 in figure 11), highly
stretched particularly for the smaller scales; the transition to sheet-like structures
appears to be significant at scale number 4 and becomes obvious at scale number
5, for which dominant structures span across almost all values of C. On the other
hand, S§;;S;; structures concentrate less in the tube-like region (see figure 9 and
compare scale numbers 3 and 4 of w;w; in figure 11 with those of §;;S;; in figure 13),
while they show, at all intermediate scales, many more structures with smaller values
of C, characteristic of sheet-like geometries. The transition to sheet-like structures
begins earlier, at scale number 3, for §;;S;; than for w;w;, and is completed by scale
number 5.

2.4. Effect of grid resolution in the geometry of structures

From figures 8 and 9, it is observed that the 256° case does not capture well the
dominance of sheet-like structures that occurs in both w;w; and §;;S;; in the small
scales (scales numbers from 4 onwards). Figures 12 and 13 show, for §;;S;;, a tendency
towards sheet-like structures at the smallest scale studied for the 256° case, although
the smaller values of C present in the 512° and 1024° for the same scale number
are not captured in the 256* case either. This is even more pronounced in the w;w;
field (see, in particular, figure 11), for which the departure from tube-like towards the
sheet-like structures present at higher grid resolutions is not obvious at all in the 2563
case.

The 5123 case performs better than the 2563 case in describing the geometry of the
structures at the scales of study, when each one is compared with its immediately
higher grid resolution. For example, the visualization space at scale number 5, the
smallest scale analysed for 5127, is rather similar to the 1024° case (columns (b) and
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(c) of figures 10-13), where structures with geometries transitioning from the tube-
like region to the strongly sheet-like region are captured at both resolutions in more
similar proportions. The 10243 case still shows a higher concentration of sheet-like
structures, particularly for the S;;S;; case.

These results are consistent with the observations of HF. They identified multiple
modes of the stretched spiral vortex (Lundgren 1982) in the numerical database and
investigated their formation processes. They found that the highest grid resolution
knax71 =4 was needed to eliminate the fragmentation of sheets for a precise capture
of the spiral turns (sheet-like) of those structures and for a proper study of the
dissipation field. Schumacher, Sreenivasan & Yeung (2005) also found the necessity
of resolving sub-Kolmogorov scales when studying the very fine structures in scalar
mixing, where sheets are also dominant in the scalar dissipation field. Sreenivasan
(2004) proposed a revised grid resolution criterion, based on intermittency arguments,
which uses estimates of the ratio of maximum to average dissipation obtained from
measured multi-fractal exponents (see Sreenivasan & Meneveau 1988) much more
stringent than the traditional k., = 1 criterion. As previously noted, the largest and
smallest scales for each grid resolution were omitted. The largest scale is dependent
on boundary and initial conditions applied and, therefore, is of less interest in this
particular study. The smallest scale was not analysed to avoid interference with the
iso-contouring step due to grid resolution effects. But three grid resolutions of the
same flow realization provide the opportunity to verify whether that last statement
holds. For that reason, figures 10-13 include, for the 256 case (column (a)), one
additional visualization space corresponding to scale number 5 (framed in a dashed-
line box). When compared to the homologous scale number for the higher grid
resolutions, it can be seen that the strong sheet-like character of the structures is not
well captured in the 256°. A possible explanation is that sheet-like structures at that
resolution are more fragmented into smaller structures (part of the original ones).
Some will still be sheet-like but their tube-like area coverage increases since the nearly
planar area is reduced and the surface is still closed, which results in higher values
of C directly affecting their location in the visualization space. Some others can even
result in small blob-like structures or, in general, rather distinct geometries than the
original sheets of which they are fragments. This is confirmed when the population of
individual structures at that scale number is evaluated, since there is a high increase of
small-area structures. The pixelization effect seen in figure 7 for the two-dimensional
plane cuts, when extended to three-dimensions (where the iso-contours, and thus the
individual structures, are obtained) can help to visualize the scenario described above.

2.5. Clustering results for the 10243 case

As part of the classification step of the methodology, clustering techniques are
applied to the structures obtained from all merged scales under study. This is done
independently for structures of w;w; and S;;S;;. Only the 10243 database is considered
here. The number of structures present at each scale largely increases with the scale
number (ie. for smaller and smaller scales). Therefore, geometries of structures of
larger scales could be under-represented in the clustering process. To avoid that
situation, a stratified random sampling with a disproportionate allocation, based on
the standard deviation of the population of each scale number, is applied among the
present scales prior to the clustering algorithm. See Appendix B for more details.
The results of the clustering algorithm applied individually to w;w; and S;;S;;
structures are presented in figure 15. An optimum number of three clusters was
automatically obtained by the algorithm for w;w;, while the structures of S;;S;; were



138 I. Bermejo-Moreno, D. 1. Pullin and K. Horiuti

0 . g

FiGURE 15. Clustering results in the visualization space — three-dimensional view (left) and
lateral (centre) and top (right) projections — with glyphs (spheres) representing the optimum
clusters of structures educed from the stratified random sample with optimum allocation of
the sets of w;w; (a) and S;;S;; (b) structures. Glyphs are scaled by the normalized silhouette
value, which indicates the degree of membership of that element to the assigned cluster.
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FIGURE 16. Optimality scores for different number of clusters obtained during the application
of the clustering algorithm to the set of structures of w;w; (a) and S§;;S;; (b) independently.
Optimum number of clusters (square point) of 3 and 2 were automatically determined for w;w;
and S;;S;;, respectively.

optimally clustered in two groups. Optimality scores obtained during the automatic
determination of the number of clusters for w;w; (a) and S;;S;; (b) are plotted in
figure 16. The optimality score is computed as the mean value of the silhouette
coefficient of all the clustered elements minus the standard deviation of those silhouette
coefficients. Higher mean values of the silhouette coefficient imply that the elements
were clustered in groups where they have a high degree of membership. Small values
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of the standard deviation of the silhouette values indicate homogeneity in that level
of membership among the clustered elements. The combination of a high mean and
a low standard deviation is sought for an optimum clustering result. We note that
the optimality scores obtained are rather low (less than 0.5, 1 being the maximum
achievable), even for the optimum number of clusters. Also, the optimality score
associated with the optimum number of clusters determined for each case does
not differ significantly from the rest. These two facts indicate that the elements
to cluster are organized as a cloud of points continuously distributed throughout
the feature space of parameters used for clustering, instead of being organized in
well-distinguishable groups that would result in higher optimality scores and more
variation among those scores for non-optimal number of clusters. A projection of
that feature space is the visualization space where the results have been plotted, where
it is also possible to see the continuously distributed cloud of glyphs.

2.6. Discussion

The dominance of tube-like structures at intermediate scales of w;w; 1s consistent
with the presence of so-called ‘worms’ reported in the fluid mechanics literature (see,
for example, Siggia 1981; Jiménez et al. 1993). Tube-like structures also appear at
intermediate scales of S;;S;; but in less proportion than for w;w;. At all scales analysed,
S:;Si; shows, on average, more planar geometries than w;w;. Also, the transition to
sheet-like structures occurs earlier (larger scale) for S;;S;;.

The maximum departure between the spectra of w;w; and S;;S;; occurs at the
intermediate scales (scale numbers 3 and 4), as observed in figure 4. This seems to
translate into differences in the geometrical character of structures of w;w; and S;;S;;
at those scales numbers. In physical space, the higher concentration of tube-like
structures found in the enstrophy field might be one geometrical link to the higher
intermittency of this field, when compared to the dissipation field.

At the smallest scale, both fields show a clear dominance of sheet-like structures.
They appear highly stretched, that is, with small thickness, but their spatial extent
can be significant. Instabilities of vortex sheets have been suggested as a primary
mechanism responsible for the generation of vortex tubes in turbulent flows. Vincent
& Meneguzzi (1994) found that the production of vortex sheets and their subsequent
roll-up, forming tubes, shows a strong correlation between scales and occurs in a one-
step process (in contrast with Richardson multi-step cascade picture). Furthermore,
they explain the alignment of vorticity with the intermediate strain-rate eigenvector as
a consequence of vorticity sheet production by strong strain, instead of tube formation.
HF identified the stretched spiral vortex (Lundgren 1982) in homogeneous isotropic
turbulence, appearing in three modes (two symmetric and one antisymmetric), that
involve one or multiple vortex sheets interacting to generate tubes. While the stretched
spiral vortex was not found in the work of Vincent & Meneguzzi (1994), that was
attributed by HF to the increased grid resolution required to avoid fragmentation of
the spiral turns. The correlation of geometries for w;w; and §;;S;; at the smallest scale
is consistent with the known feature of sheets, in which both strain and rotation rates
are large and correlated (Ruetsch & Maxey 1992; Horiuti & Takagi 2005)

Previous studies of the enstrophy field also suggest (see Nomura & Post 1998,
and the references therein) that its geometry depends on its local magnitude: intense
regions appear tube-like, while moderate enstrophy regions seem to be more sheet-
like. These considerations are, nevertheless, independent of the scale. Besides the
iso-contour value of the mean plus twice the standard deviation of each filtered
component field, whose results have been presented here, we also examined the
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mean plus three times the standard deviation, with no significant differences of the
geometries educed for each field. A wider range of iso-contour values would help
clarify the sensitivity of the geometries. Nonetheless, we note that the categorization
of globally intense or moderate values of the original field (containing all scales)
based on the iso-contour value is not directly applicable to its component fields after
the multi-scale decomposition.

The 256° grid resolution (k.7 ~ 1) was unable to reproduce the predominance
of highly stretched sheet-like structures found for the smaller scales at higher grid
resolutions. This indicates that sub-Kolmogorov scales must be resolved for a proper
geometrical study of the smallest structures in turbulence, as has been suggested
in the literature (see Schumacher et al. 2005; Horiuti & Fujisawa 2008) when
studying intermittent fields: their high fluctuations (manifested in the long tails of the
volume pdfs in physical space) will occur at very fine scales. These, in general, can
be substantially smaller than the average Kolmogorov length—scale, 7j = (v?/(e))"/4,
defined in terms of the average rate of kinetic energy dissipation per unit mass, (€),
and the viscosity of the fluid, v, and traditionally used to define the largest dynamically
significant wavenumber resolved in DNS, k,,.,, such that k..~ 1. As noted in §2.2,
the volume pdfs of the different scale component fields obtained from w;w; and S;;S;;
show wider ranges for smaller scales, indicating that higher fluctuations of those two
fields occur in the small scales and confirming the intermittency of both fields.

The initial condition of the DNS used in the present study was given according to
(2.1) in HF. Since E(k) oc exp{Z(k%)z}, and k, =2, at an early stage of the temporal
development of the flow field, a large-scale blob or an extensive sheet-like vortical
structure is formed. Although this paper deals with the DNS data at a later stage
in which the enstrophy is maximum, application of this methodology at an early
stage may exhibit predominance of structures in the blob region of the visualization
space. We can hypothesize that by straining and stretching of these blobs, they evolve
into thin sheets. As was shown in HF, these stretched sheets often form mode 3
configuration. Then, they are converted into mode 1 or 2 configuration. In addition,
these stretched sheets roll up, and numerous mode 1 spiral vortices are created.
Visualization study indicates that many mode 3 spiral vortices are discernible at the
earlier stages, but mode 1 (or 2) vortices become dominant at the later stages (see
figure 24 in HF for a schematic).

3. Assessment of the new non-local methodology complementing existing local
methods

In this section, the non-local methodology for the study of the geometry of structures
in turbulence introduced in BP and used in §2 is utilized to complement two local
criteria present in the literature for the identification of vortex tubes and vortex sheets
in turbulent flows. The purpose is to provide a qualitative and quantitative assessment
of the geometrical aspects of those local identification criteria. This is performed by
applying the non-local methodology to confirm whether the educed structures show
the expected geometries. The local and non-local methods are applied to the same
numerical database referred to in §2.

3.1. Local identification criteria

Among the various local criteria found in the literature, here we consider those used
in Horiuti & Takagi (2005) and HF for educing vortex tubes and sheets, which are
outlined below. A point is considered to belong to a vortex tube core where the
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second invariant, Q, of the velocity-gradient tensor, du;/dx;, has a sufficiently large
value. Q is defined as

1 81/!,' 2 8ul~ al/lj
= - — . 3.1
Q 2 l(f)x,) axj 8)(,'] ( )
For incompressible flow, du;/dx; =0, and Q is related to w;w; and S;;S;; by
al/l,' ou ; 1
2 Q = —ax' axl = ‘Qij-Qij — SijSij = Ea);a),- — S[jSij~ (32)
J i

The condition Q >0 was first used by Hunt et al. (1988), in combination with
the additional constraint of the pressure being lower than ambient, to define vortex
tubes. The Poisson’s equation for pressure, p, in incompressible turbulent flow (see
Bradshaw & Koh 1981) can be rewritten as

1 3%p du; du;j
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Therefore, Q is a pressure source term. Also, from the latter equality, enstrophy acts
as a source term, while dissipation acts as a sink term of pressure. There are some
situations in which the Q-criterion is not adequate for educing vortex tubes, as shown
in Jeong & Hussain (1995) (e.g. conically symmetric vortex, axisymmetric axial vortex
within a vortex ring, Bodewadt vortex).

For educing vortex sheets, the method proposed by Horiuti & Takagi (2005) is used
in this section. At any given point, the eigenvalues of the symmetric second-order
tensor A;; = Six$2; + Sjk§2w are reordered as [A;;]., [Ai;]+ and [A;;]-. Here, [A;;],
is the eigenvalue whose corresponding eigenvector is most aligned with the vorticity
field, w;, at that point. [A;;]+ and [A;;]- are the remaining largest and smallest
eigenvalues (in an algebraic sense), respectively. The eigenvalues, ¥, of A;; can be
obtained from the depressed cubic equation

Note that there is no term in 2 for being A;; =0, due to the symmetry of Si; and
antisymmetry of £2;;. Iso-contours of [A;;] are considered vortex sheets. This method
takes advantage of the known feature of vortex sheets, in which both strain rate and
vorticity are large and correlated, reflected in [A;;],. Horiuti & Takagi (2005) explain
the advantages of this identification criterion over previously existing ones also based
on that feature of vortex sheets (see, for example, Tanaka & Kida 1993).

v

3.2. Application of non-local methodology

Once the sets of iso-surfaces of Q and [A;;] are obtained, the non-local methodology
introduced in BP is applied to both sets. The multi-scale decomposition is not used
in the extraction step, since the purpose is to assess the geometrical character of the
iso-surfaces extracted by the local criteria. A multi-scale decomposition of the Q and
[A;;]+ scalar fields could be applied beforehand (as was done for w;w; and S§;;S;; in
§2), and then iso-contours of the component fields could be independently obtained,
but the meaning of the educed structures would not be the same as those obtained by
iso-contouring the original fields of Q and [A;;]+, and the purpose of the assessment
of the local criteria would be lost. While the three grid resolutions are also available
for Q and [A;;]; fields, only the finest (i.e. 1024%) is used, since this section is not
intended to evaluate the effect of the grid resolution in Q and [A;;]; structures.
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FiGURE 17. Volume pdfs in physical domain (a) and spectra in Fourier domain (b) of Q and
[A;j]+ fields for the 1024% grid resolution. Note that the volume pdfs use a transformation of
the form sign(x)log(1 4 |x[) in the abscissa coordinate, and that curves for Q and [A;;] fields
use two different vertical axes (both in the pdfs and the spectra), shifted one decade for a clear
view (non-intersecting curves).

FiGure 18. Plane cuts of Q (a) and [A;;]+ (b) fields normal one of the principal directions of
the cubic domain, at half its side length.

Figure 17 shows plots of the volume pdfs (a) and the spectra (b), in Fourier space, of
the two fields, Q and [A;;];, for the finest grid resolution (1024%). The two plane cuts
in figure 18 correspond to Q (a) and [A;;]; (b) fields, and were obtained normally to
one of the principal directions of the cubic domain at half the side length. Iso-surfaces
of Q and [A;;]+ extracted at contour values equal to the mean plus 5 and 4 times,
respectively, the standard deviation of each field are presented in figure 19. These
contour values are approximately the same ones used in HF (1200 for Q and 1000 for
[A;;]+) to educe vortex tubes and sheets. The visualization spaces in figure 20 contain
glyphs corresponding to the geometrical characterization of the individual structures
shown in figure 19, with the same colouring scheme (blue used for Q structures
and red for [A;;]; structures). It is observed that structures of Q tend to be located

near the (S, C)=(1 /2, 1) region, where tube-like structures are generally located, and
present moderate-to-high stretching. On the contrary, [A;;]+ structures appear much
closer to the C =0 region, thus corresponding to more planar geometries (sheet-like),
and with lower values of 4, implying more stretched structures.
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(b)

FIGURE 19. Iso-contours of Q (a) and [A;;]+ (b) fields extracted at their mean plus 5 and 4
times their standard deviation, respectively.
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FIGURE 20. Visualization space — three-dimensional view (a) and lateral (b) and top
(c) projections — with glyphs (spheres) representing educed structures of Q (blue) and [A;;]+
(red), scaled by the lognormalized area of each corresponding structure.

The clustering algorithm described in the classification step of the non-local
methodology is applied to the set of structures formed by the union of both sets
of iso-surfaces of Q and [A;;]; fields, without any a priori distinction of structures
of those two sets. This means that the algorithm has no knowledge of whether
individual structures were extracted from Q or [A;;]; fields. Owing to the equivalent
number of structures educed for Q and [A;;]; and the similar standard deviations of
each population, the pre-clustering stratified random sampling with disproportionate
allocation in this case results in practically the union of the complete sets. Then,
structures are clustered based solely on their geometrical characterization given by
set of parameters {S, C, 1,d5,d}, dS, df} that define the feature space outlined in §2
and described in BP. An optimum number of clusters of 2 was found (see figure 22),
and the resulting clusters are shown in figure 21, where each colour corresponds
to a different cluster. Glyphs (spheres) in that figure are scaled by the normalized
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FiGUure 21. Clustering results in the visualization space — three-dimensional view (a) and
lateral (b) and top (c) projections — with glyphs (spheres) representing optimum clusters of
structures educed from the set union of Q and [A;;]+ structures. Glyphs are scaled by the
normalized silhouette value, which indicates the degree of membership of that element to the
assigned cluster.

silhouette coefficient, a measure of the degree of membership of each structure to
the cluster it was assigned. Comparing figures 21 and 20, it is confirmed that the
two educed clusters correspond substantially to the two sets of structures (Q and
[A;j]+). Numerically, a matching of 96 % between pairs of groups was obtained. A
small percentage of structures of both fields shows a different geometry than the one
expected according to the local criterion. For example, the central tube in figure 27
(discussed later) is a structure of [A;;];, which is meant to educe sheet-like structures,
while the other two tubes in that plot are structures of Q, as expected.

We emphasize that the scaling of the glyphs in figures 20 and 21 is different.
Figure 20 uses the lognormalized area of each structure, and thus, it can be concluded,
for both Q and [A;;]4, that more stretched structures are typically larger (in area):
glyphs with lower values of A (more stretched) are bigger in that figure. On the other
hand, glyphs in figure 21 are scaled by the silhouette coefficient of the corresponding
structure as a result of the clustering algorithm: bigger glyphs imply larger silhouette
coefficient and, therefore, a higher degree of membership to the cluster the structure
was automatically assigned. This different scaling contributes to an apparent lower
density of glyphs in figure 20, when compared to figure 21, since glyphs associated
with small structures would also be small in the former, while they will appear larger
in the latter if they have a high silhouette coefficient.

Figure 22 shows the optimality scores found during the automatic determination
of the number of clusters. It is observed that a number of clusters of 2 provides an
optimality score near 0.7 (1.0 being the maximum), much higher, comparatively, than
for other numbers of clusters. A comparison with the clustering results obtained for
w;w; and S;;S;; in §2 (see figure 16), where the optimality scores were rather low
and the variation among different number of clusters was small, gives an indication
of the higher level of confidence in the clustering results for this case. This could
be anticipated by looking at the organization of glyphs in the visualization space in
figure 21, when compared to figure 15.

Thus, the intuition that resulted by the visual cues of figure 19, in which iso-
surfaces of Q seemed tube-like and structures of [A;;]; appeared sheet-like, has been
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FIGURE 22. Optimality scores for different number of clusters obtained during the application
of the clustering algorithm to the set of structures of Q and [A;;], together. An optimum
number of clusters of 2 was automatically determined (squared point).

verified with a mathematical foundation first by the geometrical characterization,
whose results can be partially seen in figure 20, and then by the application of
clustering techniques to the union of both sets, whose results are seen in figure 21.
The geometrical data can be used both qualitatively and quantitatively.

4. Interaction among structures of different fields: proximity issues

This section is devoted to the study of the interplay among structures of different
fields under a geometrical perspective. We present here a methodology that, for each
individual structure, performs an analysis of its proximal structures based upon their
geometrical characterization previously introduced. Statistical results are obtained
for the set of structures under study, presented in the form of combined probability
density functions.

A motivation for this methodology is presented in §4.1, followed by the description
of the methodology itself in §4.2. Results of its application to the four fields studied in
previous sections of this paper grouped by pairs, namely O—[A;;];+ and w;w;—S;;S;;,
are presented in §§4.3 and 4.4, respectively.

4.1. Motivation

The scalar fields that have been studied in the previous sections were all derived
from the velocity-gradient tensor. Some of them can be formulated in terms of the
others by simple algebraic relations (e.g. Q in terms of w;w; and S§;;S;;). Other fields,
not studied here but common in the study of turbulence, such as the pressure field,
p, are also related to these (see (3.3)). A passive scalar field could also be added
to the flow and related to the other fields through the advection—diffusion equation.
They all can be thought of as different manifestations of the same flow, in this case,
incompressible homogeneous isotropic turbulence decaying in time in a periodic box.
The mathematical relations among all of them are well known, and a vast effort has
been dedicated in the fluid mechanics literature to study how those mathematical
relations are translated into the physical aspects of turbulence, both in physical and
Fourier domains, through the study of pdfs, structure and (auto-)correlation functions,
spectra, etc.

It is thus conceivable that the structures extracted from those fields may have
some relations; first, in their relative locations in physical space and, second, in their
geometrical character, forming composite structures localized in a physical domain.
Perhaps the most common example of such inter-relation between scalar fields is the
formation process of a vortex tube that results from the roll-up of a vortex sheet (see
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FIGURE 23. (a) Plane cut of §;;S;; (red) superimposed over equivalent plane cut of w;w;
(blue). (b) Plane cut of [A;;]+ (red) superimposed over equivalent plane cut of Q (blue).

HF and the references therein): at an intermediate stage of that process, the core of
the vortex tube is dominated by high values of vorticity, while the sheet that is rolling
up around it presents high values of dissipation. Therefore, in that scenario, tube-like
structures of w;w; would be surrounded by sheet-like structures of S;;S;;. Similarly,
considering the scalar fields used by the local identification criteria in §3.1 to educe
vortex tubes and sheets, structures of Q (which were found to be tube-like) would be
surrounded by structures of [A;;]; (predominantly sheet-like).

Plane cuts of pairs of scalar fields, taken at the same location, are superimposed
in figure 23 (S;;S;; over w;w; on the left, [A;;]+ over Q on the right). Close relations
between their corresponding structures are noticed: structures of S;;S;; and [A;;]+
(red) tend to wrap around those of w;w; and Q (blue), respectively. It is also observed
that many structures of w;w; and Q appear to have circular cores, while structures
of §;;Si; and [A;;]; are more elongated. When extrapolated to the three-dimensional
fields, those circular patches of the plane cuts of w;w; and Q will likely belong to tubes,
while the elongated regions of plane cuts of S;;S;; and [A;;]+ will probably correspond
to sheets around them. Another scenario in which circular and elongated regions of
the plane cuts correspond, respectively, to blob-like and tube-like structures in three
dimensions would be also possible, but its frequency of occurrence is comparatively
smaller, as concluded from the study of the geometry of the four fields done in §2.
A methodology-enabling study, in three dimensions, of the geometry of structures of
different fields surrounding those of a particular field would be useful to test this
visual intuition and to quantify its appearance.

4.2. Methodology

Consider two sets of structures, .o/ and %, containing N, and Ny elements,
respectively. We impose no Boolean restriction on both sets, so that elements of
</ can also be elements of 4.

4.2.1. Processing individual structures

For each structure a; € o7 :

(a) Obtain the subset ¥ of N¢ structures of 4 (4 < %) that are closest to g; in the
bounding-box sense. This step is intended to speed up the algorithm by reducing the
load required to perform the rest of the steps.

(b) For each ¢c; € 4, j=1,..., Ny, obtain the point-wise minimum distance map
from ¢; to a;, MDM(c;, a;). This map computes, for each point of the discretized
surface c;, the minimum of the distances from it to all points of g;.
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FIGURE 24. Schematic of the computation of the conditional array map (CAM) for a given
structure a; (sheet-like) with respect to two close structures c¢; (tube-like) and ¢, (blob-like).
Minimum distance maps from c¢; (j=1,2) to a; are shown, with a common colour scale
for both ranging from red to blue, representing smaller to larger minimum distances to a;,
respectively. The proximity value derived from them is mapped on a;, with a colour scale
varying from blue (nil proximity) to red (maximum proximity). Those points of a; tagged
during the computation of the minimum distance maps (with proximity values greater than
zero) will also store the values {g;,§;,¢;} of the corresponding ¢; in the conditional array
map.

At the same time, during the computation of MDM(c;, a;), those points of g; that
provide the minima for MDM(c;, a;) are tagged and an array of N, parameters
is stored, for each one of those points, in a point-wise conditional array map of
a;, CAM(a;). The array of parameters {y;, k=1,..., N, } contains, for each tagged
point P € a;, the (dimensionless) proximity value, p, obtained from the minimum
distance, d, to the point(s) of ¢; for which P was the closest of all points in a;,
plus additional information of ¢; itself (for example, but not limited to, an identifier
of the structure c¢;, and geometrical parameters of c¢; obtained from a previous
characterization performed on it). The dimensionless proximity, p, is defined in terms
of the distance d by p = (1+d/D)~!, where D is a non-dimensionalizing length-scale
of a;. Smaller distances, d, translate into higher proximity values (p € [0, 1]).

We consider here the particular case in which, for each point P of a;, the array
{ve.k=1,...,N,} consists of four parameters (N, =4), redefined for simplicity as
{p.g.&. ¢}p: p is the dimensionless proximity value to c; described above, g is
an index categorizing ¢; among N, known groups of structures present in 4, {G,
B,g=1,...,N,| UQ/’;I G, =%}, & and ¢ are geometrical properties of ¢;. A schematic
of the computation of the conditional array map for a; based on the minimum distance
maps for c; is depicted in figure 24.

As different ¢; are processed, the conditional array map for a;, CAM(q;), is updated
at previously untagged points of a;. Also, the array of parameters of a previously
tagged point of g; is updated if the new proximity value for that point is larger
than the previously stored one, meaning that the corresponding distance of the new
structure c; to that point is smaller than all the previous c; structures processed.

If ¢; is the same structure as a;, which can happen, since, as we stated above, .o/
and % could share elements, then it is discarded in the computation of CAM(a;).
Otherwise it would eclipse all other structures of ¥ and the conditional array map
would be trivial and useless. Nevertheless, if ¢; is not the same as g;, but both happen
to be identical, then c; is included in the computation of CAM(a;), resulting in a
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trivial but useful result. For example, if .«Z and 4 are disjoint but their structures are
identical by pairs {a;, b;}, the trivial CAM(a;) obtained for each g; after processing
all structures c; € € would prove their identicality.

(c) After all ¢; have been processed for a given a;, we obtain from the CAM(a;) the

joint probability density function (jpdf), in terms of p and g, based on area coverage,
denoted by Z(p, g)|, . The value f,,p] *P(p, g) l,¢ dp can be interpreted as the
probability of finding structures of % categorized in a group G, as being the closest
structures to g; in the range of proximity values [p;, p>]. At a given point P € q;, a
structure c;- is the closest to a; at P if it has the highest value of proximity, p, among
all the structures ¢; that would tag P in the computation of CAM(a;).
We also compute the area-based joint probability density function in terms of & and
¢, with an additional intensity component based on the averaged proximity value.
For each 2D interval of the geometrical properties [§,,, &, + AE] X [¢,, & + AZ], the
discrete joint probability density function with intensity (jpdf+i) has two components:
the first one is the pdf value itself, i.e. surface area of the a; such that (&,¢) €
[En,s En + AE] X [0, 2, + AL] divided by the total area of a;; the second component is
the area-weighted average of the proximity values of all faces of the diicretized a; such
that (&, ¢) € [§n, & + A] X [£4, &+ A¢]. We denote that jpdf+i by 2.7(§, ¢ ; p)la,s,
where the vector symbol reflects that it has two components (pdf in terms of {&, ¢}
and intensity based on p). We approximate:

2P s PP usr [ PIE D = [PIE 5Py (A1)

This approximation is exact when the structures of % eclipse, for a; € o7, structures
of #— %, if Ny < Ny, and also in the trivial case Ny = N4, for which it becomes an
identity.

4.2.2. Transition from individual structures to results for the set of
Once all a; € .7 have been processed, global jpdf and jpdf+i are obtained for the
set .o/ as the average of individual jpdf and jpdf+i for each a;:

Zaie_,g/ [*g](pv g)|ai<—9«f

[Z(P, 8).ycn = N, (4.2)
) Suew |[PIECD)|
Zrecip)| = TR (43)

respectively. This is equivalent to assigning a probability density of [2(p, g)ly,—s/N.
to each event a; < % and then computing the probability density of the event .o/ « %
as the union of all individual events (Va; € .«7), taking them as independent. The
same reasoning applies to [Z.5(&, ¢ ; p)loes.

4.2.3. Computational remarks

When dealing with the discretized surfaces representing the structure a;, the jpdfs
[Z(p, g)la;n/N and [?ff(é, ¢ ;p)locsu are obtained from face-wise data, and not
from point-wise data. This requires a transformation from point-wise to face-wise
data, which is done in this case by assigning to each face the array {y,,k=1,..., N, }
of its vertex with the maximum value of the proximity (i.e. minimum distance).
Interpolation, in this case, is inappropriate since there is no guarantee of continuity
of the values of the parameters y; throughout the surface, as neighbouring points can
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have data corresponding to different surrounding structures ¢; € 4. When continuity
of the jpdf variables exists, an interpolation (for example, tri-linear if the faces
are triangular) is justified and can improve the accuracy of the jpdf, relaxing the
dependence between the discretization of the surface and the discretization of the
jpdf; this was the case in the computation of the Z(S, C) used to obtain the signatures
of the structures in the characterization step of the study of the non-local geometry
of structures, but cannot be applied to the jpdfs we are analyzing in this section.

The algorithm can be modified to obtain directly face-wise data instead of point-
wise data and avoid such transformation. Point-wise data has been chosen in our
implementation due to the simplicity and increased speed when computing distance
maps. Nonetheless, we note that this imposes the additional constraint that both
discretized surfaces a; and ¢; must have an equivalent grid resolution for an accurate
computation of the distance maps, basis of this algorithm. In our implementation, this
is guaranteed as a consequence of the iso-contouring algorithm in use and the fact
that, even when multi-scale techniques were applied, sub-sampling was not performed
on the grid for any scale, and no decimating operation was applied over the discretized
structures thereafter.

An example of application of the methodology described above is introduced in
Appendix C. It is developed analytically and then a numerical application is shown.

4.3. Application to structures of Q and [A;;]+

We apply the methodology explained in §4.2 to the structures of the fields Q and
[A;;]+ educed in § 3.1, for the 1024° grid resolution. In our first application, the set .o/
will be composed of the extracted structures of Q, .o/ = #(Q), where Z(«) denotes
the set of extracted structures from a three-dimensional scalar field «, while the set
4 is composed of the union of structures extracted from Q and those extracted from
[Aijl4, # = 2(Q) U Z([Aij]+) Therefore, in this particular case, .«/ = 4.

We choose (£,¢) as the geometrical parameters (3‘ ,C ) obtained in the
characterization step of the non-local study of the geometry of structures applied
in §3.2. The index g refers in this case to the two groups of structures in which %
can be immediately divided, namely, structures of Q (g=1) and structures of [A;;]+
(g =2). The length-scale D used to non-dimensionalize distances when computing
proximity values for each structure a; is taken to be the parameter © = 3V/A,
where V is the volume and A is the area of g;. Note that this parameter was used
in the geometrical characterization step of BP to non-dimensionalize the curvedness
(see (2.2)), resulting in the dimensionless value C, from which C was obtained. For
a sphere of radius R, ugnre =R; for an elongated tube with circular cross-section
of radius R, upe~3 R/2; for a predominantly sheet-like structure of thickness ¢,
Wsheer = 31/2. After applying the methodology, we obtain both [Q’TJ(S’, C 3P ren
and [Q(p, g)|¢’/<—ﬂ

4.3.1. Proximity and area coverage of surrounding structures through jpdf+i

Figure 25 shows [?fJ(S’, C 3 P)lv—a. Figure 25(a) plots the representation of the
pdf component, using a greyscale, where white indicates nil area coverage and
black indicates the maximum area coverage. Therefore, dark regions indicate that
structures of # with values of (S, C) within those regions are found, on average,
to surround comparatively larger proportion of the area of structures of .«7. Light
regions indicate values of (S, C) not so commonly encountered in the structures of %
surrounding those of .o7. Figure 25(b) represents the intensity component, which in
this case corresponds to the proximity value, using a colour-scale (continuous gradient
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FIGURE 25. Components of the jpdf+i in terms of (5, C) plus intensity component based on
proximity, of structures of Z'(Q) U Z([A;;]4) surrounding structures of Z'(Q): area coverage
pdf component (a) using greyscale; intensity component (b) using blue-cyan-green-yellow-red
colour-scale; composition of area coverage pdf and intensity components to obtain the
composite plot (c) with bi-dimensional hue-saturation gradient scale (d) corresponding to
proximity (hue) and area coverage (saturation).

blue-cyan-green-yellow-red): blue indicates low proximity (farther distances) while red
indicates high proximity (closer distances) of the structures of # with given values
(S C) to those of .«7. Figure 25(c) plots a composition of both the pdf component
and the intensity component by means of a hue-saturation gradient, represented in
figure 25(d). In this HSB (hue, saturation, brilliance) colour space, the area coverage
corresponds to the saturation, S, while the intensity component corresponds to the hue,
H, and the brilliance, B, is kept constant at its maximum value. Therefore, it contains
information of the averaged area coverage in the saturation scale and information of
the averaged proximity in the hue scale. Saturated-red regions correspond to values
of (S C ) found in structures of # closest to those of .&/ and covermg, comparatively,
the largest proportion of their surface area. Desaturated regions indicate less area
coverage and colours closer to the blue hue indicate lower values of the proximity
(and thus, farther structures). Regions of saturated-blue, for example, will indicate
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FIGURE 26. Representation of the marginal pdf of [?(p, g)|,,.p in terms of the proximity p
(thick black line), showing the contribution of each group g by the different coloured areas
between two black lines (added cumulatively).

that structures of % with those values of (3 C ) appear far but cover a large proportion
of the surface area of structures of .«/. Desaturated blue regions, on the other hand,
will indicate that structures of # with those values of (S C ) appear far as well, but
covering a small fraction of the surface area of structures of .«7. Note that both scales
are normalized: the maximum area coverage will have a saturated colour, and red hue
corresponds to the maximum proximity value. Therefore, they provide only relative
(not absolute) information of the area coverage and the intensity (proximity) values.
This can be changed fixing absolute ranges for the hue-saturation bi-gradient scale.

The first conclusion that can be directly drawn from figure 25 is that structures
of Q are mainly surrounded (more saturation), among those of [A;;]; and Q itself,
by structures with low values of C, which are also closer (red hues). Those C values
correspond to sheet-like structures. A desaturated region (less area coverage) of
green/cyan hues (farther structures) is located near the (8, C)~(1/2, 1) zone. This
implies that, secondarily, tube-like structures also surround structures of Q, but they
are not so proximal and cover a smaller relative surface area of them. When figure
25 is compared to figure 20(c), since both share the same axes (8,C ), it is indirectly
concluded that the majority of sheet-like structures surrounding those of Q (as seen
in figure 25 by the saturated red-coloured regions) are structures of [A;;] since they
are the ones with a higher density of glyphs in the corresponding regions in the §~C
plane of figure 20.

4.3.2. Proximity split by groups through cumulative marginal pdfs

In figure 26, we plot cumulative one-dimensional marginal pdfs obtained from
[#(p. 8)|.ses for increasing group g mumbers, {fi(p)= St [2(p. g)lrn k=
1,..., N,}. The contribution of each group g is represented by a different colour
between black lines. For k= N,, the result is the marginal pdf in terms of p,
f(p)= fn,(p), represented by a thicker black line. From figure 26, it is directly
concluded that structures of Q are predominantly surrounded by structures of [A;;]4,
represented by the red area of the marginal pdf. The blue area corresponds to
structures of Q, which cover a much smaller fraction and are farther (lower values
of proximity) than those of the majority of [A;;]; structures. This was indirectly
concluded previously from the combination of figures 25 and 20. The contribution of
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FIGURE 27. Examples of composite structures formed by interaction of tube-like (blue) and
sheet-like (red) geometries found in the database. In cases (a) and (b), a tube is mostly
embedded by one or more sheets that intersect it and remain at a close distance. Case
(c) consists of three tubes and a sheet that follows closely their geometry, intersecting them,
and connects them through stretched regions. Note how two of the three tubes are nearly
transversely aligned: similar configurations of tubes and sheets were often found in HF, where
they proposed a creation process based on the interaction of the sheets surrounding the
tubes. Cases (d) and (e) show, each, a sheet-like structure wrapping around a tube, without
intersecting it but remaining at a close distance and following its curvature. A smaller sheet
intersecting the tube is also seen in case (d). Case (f) shows three tubes at moderate distances
from each other (= 5-10 times their average radius) with a similar orientation and sheets
partially surrounding them at a close distance or even intersecting them. For clarity, only a
subset of all the nearby structures surrounding each tube in every case is shown. The length of
the small horizontal black bars at the bottom of each plot represents the average Kolmogorov
scale, 7, for reference. In addition, for case (f), the Taylor microscale is also represented by the
length of the longer black bar at the bottom.

[A;j]+ (red area) to the marginal pdf in figure 26 shows four regions of interest; first,
the region near unitary proximity (p ~ 1), which corresponds to structures of [A;;]+
very close to those of Q, likely overlapping/intersecting each other. Examples of this
interaction, extracted from the database under study, are shown in figure 27, cases
(a), (b) and (c). Second, the region with proximity values between 0.6 and 0.9, where a
hump is visible in the marginal pdf, which corresponds to structures of [A;;]; (or parts
of them) still at a close distance but not overlapping or intersecting. Those values of
proximity translate into distances between 1/10 and 2/3 times their own characteristic
length, defined by u, which corresponds, for the tube-like structures predominant in
Q, to approximately 3/2 times their characteristic radius. See cases (d), (¢) and sheets
surrounding tubes in case (f) of figure 27 for some examples of this configuration.
Third, the region with proximity values between 0.25 and 0.5 with low values of the
marginal pdf indicates that surrounding structures are rarely found at those distances.
The fourth region corresponds to low values of proximity (p~0.1 — 0.2). See, for
example, tubes nearby other tubes in case (f) of figure 27. We note, as a result of
the definition of p, that a wide range of high values (> 4) of the relative distance
between structures accumulate in that region of low p. Thus, it is expected to find
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FIGURE 28. Results for structures of Q surrounding themselves: [977,% (3, C i) e
(a) and [2(p, g)|.sx (b) for the case .o/ =B =2(Q), g=1.

an accumulation of the marginal pdf for low p whenever structures of .o/ are not
completely surrounded by close ones of 4. A modification of the definition of p or
the scale used to represent it can spread the effect of those higher distance over a
wider range if required, but here we are more interested in closer structures, so the
current p seems suitable for this purpose.

4.3.3. Structures of Q surrounding themselves

A question that arises after this analysis is whether structures of Q might be
closer to themselves than what the blue region in figure 26 shows, but structures
of [A;;]+ eclipsing them when computing [ﬁf (3’, C; P)|—s masquerade the result,
making them appear farther than they are. This can be answered by applying the
proposed methodology to .« =% =2%'(Q), that is, considering the problem of how
structures of Q surround themselves. Figure 28 shows the [Q’»f (3’, C; P)lses (a) and
[Z(p, g)l.s—z (b) obtained in this case. Note that now there is only one group (g =1).
[97,% (S’, C: P)lo—z shows, as expected, tube-like geometries as the proximal, which
is trivial once the sheet-like structures of [A;;]; have been removed from #. But,
[Z(p, g)|.s—5 also shows a peak at about the same value of proximity that was found
for Q structures when [A;;]; structures were included, which confirms the farther
distances among Q structures to themselves. See case (f) in figure 27.

4.4. Application to structures of w;w; and S;;S;;

Now we apply this methodology to structures of w;w; and S;;S;; educed in §2.3.
For these two fields, a multi-scale decomposition was performed. Of all possible
combinations of fields and scales, we study two cases due to their particular relevance.
In both cases, we take .o/ as the set of structures of w;w; at scale number 3
(intermediate scale). They were found in §2.4 to be predominantly tube-like. We
take # as the set of structures educed for scales numbers 36 for w;w; in the first
case (thus, .o/ = %) and for §;;S;; in the second (thus, .&Z N % =0). In both cases, we
split # into four groups (N, =4), each corresponding to a different scale number of
the field under consideration (w;w; or S;;S;;, respectively).

Figure 29 shows [2.4(8, C ; p)|wcs (left) and [2(p, g)| ., (right), for the first (a)
and second (b) cases. From the jpdf+i (left plots), it is observed that structures with
small C (corresponding to sheet-like geometries) appear to be the closest in both
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FIGURE 29. Results for structures of w;w; at scale number 3 surrounded by structures of
w;w; (a) and by structures of S;;S;; (b), at scale numbers 3-6: [2F(S, C ; p)lv—gs (left) and

cases (yellow and red spots). But, there is a wide range of geometries among the
surrounding structures.

In the first case, that is, for # containing structures of w;w;, two saturated regions
(implying high area coverage) are present in that plot, corresponding to tube-like
(nearer the (S C) (1/2, 1) region) and sheet-like (small C values) structures. The
latter appear closer (red and yellow hues, as opposed to green and cyan), but the
former seem to cover a slightly higher percentage of the area of structures of .o/
(more saturated colours). The region in between those two (intermediate values of C )
contains structures which appear farther and cover a smaller area.

In the second case, # containing S;;S;; structures, the highest area coverage
corresponds clearly to those structures with low C (sheet-like), which are also the
closest (red, yellow and green hues). The spread towards other geometries is also
significant, but the area coverage and proximity decreases in those other regions of
the $-C plane (less saturation and cyan and blue hues). Also, the region around
tube-like structures found in the first case is now, in the second case, more diffuse and
spread towards the blob-like region. This is consistent with the fact that less tubes
were found in §2.3 in the geometrical analysis of structures of S;;S;;.

The right plots of figure 29 show the cumulative marginal pdf obtained from
[Z(p. 8)|.,4> split by groups corresponding to each scale number under study (3-6).
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We use the same colour code for each scale number as in figures 8-13. There are
two main differences between both cases of study. In the first case, structures of
w;w; at scale number 3 have a small contribution to the marginal pdf, and appear
far (p=~0.1) compared to the rest of the scales; structures at scale number 4 are
the closest, showing a significant increase of p in the range 0.6-0.8, while structures
at scale numbers 5 and 6 also appear close, but with a more gradual increase for
p > 0.6. In the second case, structures of S;;S;; at each one of the scales under analysis
(3-6) have a more balanced contribution to the marginal pdf; scale number 3 shows
a slightly higher concentration of closer structures (p > 0.6), and less proportion of
farther structures (p ~0.1) when compared to structures at scale numbers 4-6.

4.5. Discussion

From this proximity study, tubes appear closely surrounded by sheets, when both
structures of Q and those of an intermediate scale of w;w; are analysed, in relation
to structures of [A;;]+ and the sets of structures of w;,w; and S;;S;;, respectively.
Concerning structures of Q and [A;;]; surrounding those of Q itself, it is found that
a large proportion of structures of [A;;]+ appears much closer with regions either
intersecting or at less than one characteristic diameter of the tube-like structures of
0, and covering a larger proportion of their area than other surrounding structures
of Q. These are, on average, farther than five diameters apart from themselves, as is
also a second group of [A;;]+ structures, which might be surrounding those other Q
structures at a closer distance.

Regarding structures of w;w; at an intermediate scale (scale number 3), which
were found to be predominantly tube-like in the previous geometrical study (§2),
we have considered the surrounding structures at the same and smaller scales (i.e.
scale numbers from 3 to 6) of both w;w; and S;;S;;, each field independently. In the
first case, the set of structures of w;w; at scale number 4 is the predominant group
surrounding tubes of w;w; at scale number 3. Structures of smaller scales (i.e. scale
numbers 5 and 6) are also found close to those at scale number 3. In comparison,
structures at scale number 3 appear farther among themselves. Concerning geometries
of proximal structures, we find two predominant groups: sheet-like structures, which
appear closer on average, and tube-like structures, certainly farther but with a high
proportion of the total area coverage. Other geometries, intermediate between tubes
and sheets, also had a contribution, but to a lesser degree of both proximity and area
coverage.

In the second case, when structures of S§;;S;; at scale numbers 3-6 surrounding
structures of w;w; at scale number 3 are studied, all scales show similar results of
proximity and area coverage. Structures at scale number 3 of S;;S;; have a slightly
higher value of proximity, likely owing to the similarity of some structures of both w;w;
and S;;S;; at that intermediate scale. Regarding the geometry of proximal structures
in this case, they are primarily sheet-like with significantly higher proximity values
and area coverage. Other geometries can be seen among the surrounding structures,
but they tend more towards the region of blob-like structures, instead of tube-like
structures, as opposed to the case of surrounding structures of w;w; itself. Also, these
other geometries are found farther and cover a smaller area fraction, on average.

Physically, these findings are consistent with the phenomenology of tubes being
generated by one or multiple proximal sheets discussed in §2.6. Furthermore, as
Ruetsch & Maxey (1992) pointed out when studying the evolution of small-
scale structures in incompressible homogeneous isotropic turbulence, vortex tubes
and vortex sheets should not be considered as separate, independent structures.
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Instead, they form composite structures, as those shown in figure 27, with dependent
geometries.

The results of this proximity analysis also support the structure-based explanation
of intermittency, previously explored by Moisy & Jiménez (2004) using box counting
methods. They found that intense structures form clusters of inertial-range extent. In
our case, the low values of the cumulative marginal pdfs encountered for intermediate
values of proximity suggest the existence of empty regions (in the iso-contour context)
in physical domain in between composite structures.

5. Conclusions

In this paper, we studied first the geometry of structures of two scalar fields,
w;w; and §;;S;;, from a DNS of incompressible homogeneous isotropic turbulence
decaying in time in a periodic box, at the time of maximum enstrophy of the flow.
Three different grid resolutions were analysed, corresponding to 256°, 512° and 1024°
points, with identical initial conditions and similar Re;~ 77, resulting in k.. of
approximately 1, 2 and 4, respectively. This allowed us to compare the geometry
of the structures for different resolutions and evaluate whether the traditional DNS
grid-resolution criterion k.77 =~ 1 is adequate for such geometrical analysis of the
educed structures.

The 1024° case showed a continuous transition, for decreasing scale, from blob-like
and moderately stretched tube-like structures at large scales to highly stretched sheet-
like structures at the smallest scales under study. Intermediate scales of w;w; show a
dominance of tube-like structures, which is consistent with the presence of so-called
‘worms’ in previous studies (Siggia 1981; Jiménez et al. 1993). Tube-like structures
also appear at intermediate scales of S;;S;; , but in less proportion than for w;w;. The
case with smallest grid resolution (256° points) did not capture the predominance
of highly stretched sheet-like structures educed for the small scales at higher grid
resolutions. This suggests the necessity to resolve sub-Kolmogorov scales for a proper
geometrical study of the smallest structures of intermittent fields in turbulence, as
stated in the literature (see Schumacher et al. 2005; Horiuti & Fujisawa 2008).

For the 1024° case, clustering techniques used during the classification step to
obtain distinct groups of geometries among the educed structures resulted in three
and two as the optimum number of groups obtained for w;w; and S;;S;;, respectively.
Blobs, tubes and sheets can be seen as the predominant structures in the three groups
of w;w;, while blobs and sheets are predominant in S;;S;;, but tubes, present also in
this latter field, were included among the two optimum groups. Optimality scores for
other number of groups did not differ substantially from the optimal results. This is
a consequence of the continuous distribution of geometries, which indicates that the
educed groups are not highly differentiated from each other and that the clustering
results in this case should be considered with reserve.

Second, we applied the same non-local methodology for the study of the geometry
of structures to two scalar fields, Q and [A;;],, used by local criteria of identification
of tubes and sheets in turbulence, based on the physical meaning of those quantities,
that have been proposed in the fluid mechanics literature. This application confirmed
the geometrical character expected for the majority of structures educed from those
two fields (which before had been done only visually) by providing the necessary
mathematical and geometrical background as well as means for quantifying the
frequency of appearance of each geometry. Clustering techniques in this case provided
a much clearer optimum number of two groups of structures, well differentiated.
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Ninety-six percent of the structures of Q and [A;;]; were assigned to separate groups
by the clustering algorithm. Q structures were found mainly to be tube-like, while
[A;;]+ were recognized as sheet-like. A small amount of structures of both fields
presents a geometry that does not correspond to the expected shape. For example,
some tubes were found among structures of [A;;]..

Finally, we introduced a new methodology for the study of proximity issues among
structures corresponding to different fields, from a geometrical perspective. It provides
information about the type of geometry found in structures of one group surrounding
those of another, indicating the proximity and area coverage, by means of joint
probability density functions. The set of surrounding structures can also be split into
groups, and quantitative results for each group, concerning the proximity to the other
structures, are shown by means of cumulative marginal probability density functions.
The representation of the geometrical character of each structure is closely related
to the visualization space used in the classification step of the previous study of
the geometry of structures in turbulence (as introduced in BP). We applied this new
technique to structures of Q, [A;;]+, w;w; and S;;S;;, taken by pairs.

Structures of Q appear closely surrounded, partially overlapped and/or intersected
by those of [A;;];. Comparatively, other structures of Q appear farther from
themselves and cover a smaller proportion of their area. A second group of proximal
structures of [A;;]; surrounds those of Q at a farther distance, comparable to the
distances where other structures of Q are located, which they might be closely
surrounding.

Considering only structures of w;w;, those extracted at an intermediate scale
(predominantly tube-like) are surrounded primarily by w;w; structures at the
immediately smaller scale, and to a lesser degree by structures of even smaller
scales. Structures of w;w; at the same intermediate scale appear significantly farther.
Two groups of surrounding geometries are significant: sheet-like structures are closer;
tube-like structures are farther, but they cover a large proportion of the area of the
structures they surround, thus indicating that the close sheet-like structures are not
eclipsing them.

When w;w; at the same intermediate scale are studied in relation to the structures
of S;;S;; at that and smaller scales, a more balanced contribution from all scales is
observed. Sheet-like geometries are again the closest, and they appear to wrap around
the tubes of w;w;, eclipsing more effectively other farther geometries.

Several configurations of composite structures were presented. They were associated
with different degrees of proximity described above. In particular, the configuration of
sheets closely surrounding tubes is consistent with spiral-like super-structures found
in the formation process of vortex tubes by rolling-up of sheets. Another common
configuration consists of tubes intersected by more planar structures that follow
their spatial extent and often connect to other tubes with similar orientations. The
grouping of proximal individual structures to form these composite structures reflects
the intermittent character of the fields under study, by which empty regions appear
among those composite structures. This effect is propagated to the smaller scales and
is shown through the marginal cumulative pdfs in terms of proximity.

The general framework of this new methodology, for the study of proximity issues
among structures, allows the incorporation of more geometrical and non-geometrical
parameters in the analysis (by increasing the size of the array of parameters used
in the computation of the conditional array map). Inclusion of physical properties
associated with each structure could be helpful when studying how structures of one
field are dynamically affected by those of other fields. In this context, tracking the
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FiGure 30. Volume pdfs in physical domain (a) and spectra in Fourier domain (b) of aliased
and dealiased S;;S;; fields for 256° and 5123 grid resolutions. Note that the volume pdfs use
a transformation of the form sign(x)log(1 + |x|) in the abscissa coordinate. The spectra use
two different vertical axes, one for the 2563 case and the other for the 5123 case, shifted one
decade with respect to each other for a clear view of all curves. The plot of the pdfs includes
an inner subplot with a zoomed view of the right tails. The plot of the spectra contains two
subplots with zoomed views of the right tails of the 256° case (bottom) and 5123 case (top).

time evolution of the geometrical and proximity properties of these structures, at
the individual and composite level, would also expand our understanding of their
inter-dependent dynamics.

This work has been supported in part by the National Science Foundation under
Grant FRG DMS-0353838. K. H. is supported by Grants-in-Aid from the Ministry
of Education, Culture, Sports, Science and Technology, Japan (No. 18560156). Part
of the computations were performed at Cybermedia Centre, Osaka University and
National Institute for Fusion Science.

Appendix A. Effect of aliasing error

Even though the velocity field, u;, is free of aliasing error, and so are S;; and w;, the
computation of the products of its components in physical space introduces aliasing
error in the resulting S;;S;; and w;w; fields. This error can be removed by means of
the 3/2-rule to obtain a dealiased field.

We show a comparison of the analysis of aliased and dealiased S;;S;; fields in the
2563 and 512° grid resolution cases. This allows an evaluation of the effect of aliasing
error in the educed geometries for this particular database. The same comparison was
performed for the w;w; field, finding equivalent results (not shown).

Figure 30 shows the volume pdfs and spectra of aliased and dealiased S;;S;; fields,
for both 256° and 5123 cases. It is observed, by looking at the spectra, that aliasing
error introduces small differences at the end of each spectrum. The difference is more
significant for the 256* case. Therefore, it is expected that aliasing error will mainly
affect the smallest scale of each case, since the spectra of larger scales are the same
for the aliased and dealiased fields. While removing the aliasing error improves the
spectrum, it also introduces negative values in the resulting dealiased S;;S;; field, as it
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FIGURE 31. Three-dimensional views of the visualization spaces, with glyphs (spheres)
representing educed structures of the aliased and dealiased S;;S;; fields, for the smallest scales
of the 2563 (scale 5) and 5123 (scale 6) grid resolution cases. On the right, the visualization
space corresponding to the 1024° grid resolution case is shown for reference. Glyphs are scaled
by the lognormalized area of the corresponding structure.

can be observed in the volume pdfs. This effect is more significant for the 256° case.
We note that S;;S;; is, by definition, a positive quantity, so those negative values are
non-physical, and result from the application of the 3/2-rule.

Figure 31 shows a comparison of the three-dimensional views of the visualization
spaces containing the glyphs representing the geometry of the structures educed from
the aliased and dealiased S;;S;; fields at the smallest scales of the 256° and 5123 grid
resolution cases (scale numbers 5 and 6, respectively). On the right, the visualization
spaces corresponding to the 1024° grid resolution case at the same scales (5 and 6)
are shown for comparison purposes. Note that the aliasing error of the 1024° case
used for reference would affect scale number 7, while scale numbers 5 and 6 will be
practically unaffected, and thus it is legitimate to use it for comparison with smaller
resolution cases. It is observed, particularly for the 256* case, that a slightly higher
number of structures of appreciable size was educed when aliasing error was removed,
compared to the aliased field. Nonetheless, the number and, especially, the location
of these new structures in the visualization space does not significantly improve the
results when compared to the reference case: glyphs in the 256% case appear with
intermediate values of C, while there is a high concentration of glyphs with low values
of C in the reference case that are not educed even when aliasing error is removed.
The same comments apply to the 5123 case at scale 6, when compared to the reference
case, which again shows a higher concentration of glyphs with low C.

In summary, removing the aliasing error in this case did not significantly improve
the geometrical results for the smallest scale, while it did modify the volume pdfs in
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physical space, adding negative non-physical values. As expected, by looking at the
spectra of figure 30, the geometrical analysis for structures educed at larger scales
(larger than the smallest scale attainable for each grid resolution) was found to be
practically identical for the aliased and dealiased fields.

Appendix B. Stratified sampling with disproportionate allocation

When a multi-scale decomposition is applied to the scalar field from which the
structures are educed, large differences among the number of structures obtained for
each scale are expected. Larger scales will generally have a smaller number of educed
structures than smaller scales. This difference in number can sometimes be of several
orders of magnitude, particularly when analyzing fields with a high grid resolution,
that results in a larger number of scales.

Thus, when structures of all scales are considered in the clustering algorithm, after
the geometrical characterization, those structures (and their geometries) corresponding
to the largest scale can be under-represented, owing to the much smaller population
they have, compared to the others. In such scenario, it can be beneficial to apply,
prior to the clustering algorithm itself, a sampling of the population that takes into
account the uneven sizes of the strata in which it can be divided.

We use a disproportionate stratification that considers the variance of the mutually
exclusive strata to determine the sample size for each stratum. If n, is the sample
size of the stratum with the minimum standard deviation, o, = min{oy, Yk}, then
the sample size, nj,, of any other stratum, h, with standard deviation o;, will be
proportional to (0, /0,) n,. Therefore, those strata with higher variances will also have
a higher number of elements to represent them in the clustering algorithm, accounting
for their higher diversity. We take n, as the population size of that stratum with the
minimum standard deviation, N,, since the purpose of this sampling is not to reduce
the global population size, but to have a more balanced representation of the different
groups present in it for a better clustering.

After the disproportionate stratification, for those strata with n, < N,, where N, is
the population size of the stratum 4, we take a random sample of n;, out of the N,
elements. Otherwise, the complete population is considered for that stratum.

Appendix C. Example of application of proximity algorithm

Consider a three-dimensional pattern of structures formed by: (i) a circular cylinder
of length L and radius Reyngr With cylindrical axis coincident with the z axis,
centred at z =0; (ii) eight spheres of radius Rgpner. and centres (+Dyphere, 0, £H) and
(0, £ Dgphere, £H) and (iii) four segments of circular cylindrical sheets, coaxial with
the cylinder, of length L and thickness ¢, centred at (£ Dgjeer, 0, 0) and (0, +Dypee , 0),
each covering an azimuthal angle of (n/2) — 2 y. The transition to the planar caps of
the cylinder and the borders of the sheets is rounded with radius #/2. This pattern
is depicted schematically in figure 32 up to symmetries. Note that the planes x =0,
y=0, z=0 and x = + y are planes of symmetry.

Repetition of this pattern at distances {4k - D yjinger. k=1,2,3, ...} in the x and
y directions results in a set of cylinders surrounded by spheres, sheets and other
cylinders.

We will apply the methodology introduced in §4.2 to evaluate how the set of
cylinders is surrounded by the set of spheres, sheets and other cylinders, in terms of
proximity and area coverage. Thus, .o/ will denote the set of cylinders and % will be
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FIGURE 32. Schematic views, up to symmetries, of the unitary pattern of a cylinder surrounded
by spheres and circular cylindrical segments of sheets. (a) cut by the plane z= H (top view);
(b) cut by the plane y =0 (front view). Note that x =0, y=0, z=0 and x =y are planes of
symmetry, and only one-eighth and one-quarter of the pattern are represented on the left and
right plots, respectively.

the whole set of structures (cylinders, spheres and sheets). Note that .o/ — #. Here
% can be split in three groups, each with a different group index g: spheres (g =1),
sheets (g =2) and cylinders (g = 3).

C.1. Area coverage

As a side problem, consider two co-planar circumferences, C; and C,, of radii R;
and R,, respectively, whose centres are located at a distance D (see figure 33). Take
a point Q' € C,, defined by an angle o). Define P’ € C; such that the distance
to Q' is minimum among all points of C;. The angle «] that defines P’ is given
by tanaj=p sina,/(1 — p cosaj), where p=R,/D. The angle o for which o] is
maximum is given by cosa; = p, resulting sin«; = p. The points P’ and Q' given by
such «; and «, are denoted by P and Q. The distance between P and Q is given by
dpo=(D*+ R} 4+ R} —2R;\/1 — R3 — 2R3)"/2. Thus, the arclength of C; covered by
C, in the sense of minimum distances is given by R; - (2«;), where the factor 2 results
from the symmetry of the geometry with respect to the line joining the centres.

Let us translate the previous results obtained for the case of the two circumferences
into the three-dimensional problem of cylinders, spheres and sheets. For the pair
cylinder-sphere, the angle « (see figure 32) of the cylinder defining the arclength
coverage by the maximal circumference of the sphere will be « = arcsin(R;phere / Dsphere )-
For any other circumference of the sphere (not maximal), a(r)= arcsin(r/Diphere),
where r is the radius of the circumference intersection of the sphere and the
plane normal to z at a distance r above/below its centre. Thus, the area
of the cylinder covered by a sphere (in the minimum distance sense) will
be Acsphere =2 fORx”hm R(rylinderza(r) dr=4 Dsphere Rsphere [G Ol(O’) + \/1 —0?— 1]5 where
0 = Ryphere / Dsphere. The factor 2 in front of the integral results from the symmetry of
the sphere for z-planes above and below the one crossing its centre.
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FiGURE 33. Length-coverage problem of two circumferences.

Consider now the pair of cylinders with axes (0, 0, z) and (Dyiinger, Deylinger > 2), the
latter resulting from the repetition of the unitary pattern at a distance Diyjinger 1D
the x and y directions. They are separated by a distance \/ED(,y,mder. The angle y
defining half the arclength coverage of one cylinder to the other (corresponding to the
angle o in the two circumference problem) is y = arcsin(Rcyiinder/ ﬁDcyl,-nde,). Thus,
the area of one cylinder covered by the other (in the minimum distance sense) will be
ACcylinder = Rcylinder2 Y L.

We choose the segment of cylindrical sheet in figure 32 to extend up to an azimuthal
angle of m/4—y. Extending the sheet by symmetry to the —y region, the area coverage
of one sheet to its co-axial cylinder will be, in the absence of any other structures,
ACgpeer = Reyiinder 2 (/4—y) L. With this choice of geometry, only the spheres and sheets
in the unitary pattern of a reference cylinder, and the cylinders with axes at a distance
ﬁDcylindw from it will contribute to its area coverage of that reference cylinder. Other
spheres, sheets and cylinders will be eclipsed from it by closer structures and will not
contribute to its area coverage. Therefore, for each cylinder of surface area A.yjinder,

(a) Area coverage by spheres: ageres = 8 ACsphere / Acylinder ;

(b) Area coverage by sheets: note that the spheres of the previous item are eclipsing
the sheets, as they are located in between the reference cylinder and the sheets, so their
contribution needs to be subtracted. Therefore, agneers =4 ACspeets / Acylinder — Aspheres and

(¢) Area coverage by other cylinders: by repetition of the pattern in the x and y
coordinates, there will be only four other cylinders surrounding each cylinder that
are not eclipsed by sheets or spheres. These correspond to the cylinders at a distance
\/EDC)/.Iinde, from the reference one. Therefore, acyingers =4 ACeyiinder / Acylinder -

C.2. Proximity values

The local proximity value, p, is defined in terms of the distance, d, between points of a
target and reference structures as p = (1+d/D)~', where D is a non-dimensionalizing
distance of the reference structure, chosen as D=pu = 3V/A, where V is the volume
and A is the surface area of the reference structure.

The minimum and maximum proximity values in the conditional array map
obtained for each surrounding structure to the reference cylinder, CAM/(cylinder),
will be

(a) proximity to spheres

P_’;;)ll’lr(l_)res |CAM((?ylinder) = [1 + (Dsphere - Rcylinder)/,U«cylinder} 1’

max

—1
pspheres |CAM(cylinder) = [1 + (Dsphere - Rcylinder - RspherE)/M(?ylinder] 5
(b) proximity to sheets

min

’ —1
Psheets |CAM (cylinder) = [1 +d (t/2, 1/2, Dsheez — RL’yIinder + t/2)/ﬂ('ylinder] D
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min max mean

Structures g § C a P P p

Spheres 1 1.0 1.0 03 05 08 0.7
Sheets 2 050006 03 03 03
Cylinders 3 05 1.1 0.1 0.1 0.1 0.1

TaBLE 3. Approximate numerical values for each group of structures, g: (3‘, c ) feature centre
(in terms of the absolute value of the shape index, S, and the dimensionless curvedness,
C); a, area coverage in the proximity sense to the reference cylinder and {p™", p™e*, pmean},
minimum, maximum and mean proximity values from CAM (cylinder).
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FIGURE 34. Histograms approximating [,Jff(é, C;ip)lwes (a) and [P(p, g)lou—as (b) for the
numerical application.

—1
Z;:ZéJCAM((ylmder) [ + (Dsheet - Rcylinder - t/z)/:u(fyli"de’] and

(¢) proximity to cylinders
-1

min _ i
pcylmders |CAM(cylinder) - [1 +d (Rcylinder ’ Rcylinder ) \/i Dcylinder )///Lcylinder:| 5

—1
p(ylznders |CAM (cylinder) [1 + (\/j Dcylmder 2 Rcylinder )/,ucylinder:| 5

where d'(x,v,z) = (x> + y> + 22 — 2x/1 — y> — 2y*)1/2 was defined for the two-
circumference problem as dpo(R;, R, D). Owing to the geometrical configuration of
the unitary pattern of structures, the results of area coverage and proximity obtained
for one reference cylinder can be extended to the set .o/ of all cylinders.

C.3. Numerical application

Taking Rcylinder = 1, L= 10, Rsphere = 125, Dsphere = 25, Dsheet = 4, Dcylinder =8.2 and
t=0.1, then A yjinger = 69.1, Vepiinger = 31.4, [eyiinger = 1.36 and table 3 can be obtained
based on the previous analysis. From the values on that table, the histograms
approximating [f@»f (&,¢;p)lves and [2(p, g)|.s—s can be plotted.

Figure 34(a) shows the histogram that approximates (7.5 (&,C ; p)lozem, With the
§ and C divided into 32 and 40 intervals, respectively. There are only three two-
dimensional intervals (squares) contributing to the histogram. The location of those

squares corresponds to the feature centre (8, C) of each type of surrounding structure
(see table 3): (1, 1) for spheres, (0.5,0) for sheets and (0.5, 1.1) for cylinders. The
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colour of each square corresponds to the mean proximity value for the corresponding
structures associated with that square: the red square, corresponding to the spheres,
has the highest mean proximity, 0.7; the green one corresponds to the sheets, with
an intermediate mean proximity of 0.3 and the blue square, corresponding to the
other cylinders, has a low mean proximity of 0.1. The higher the saturation of the
colour of each square, the higher the area coverage of that type of structures; in this
case, we found an area coverage of 0.3 for the spheres, 0.6 for the sheets and 0.1
for the cylinders, so the highest saturation will be that of the green square, and the
lowest saturation corresponds to the blue square, while the red square will have an
intermediate saturation.

Figure 34(b) shows the histogram that approximates [Z(p,g)| ., With the
proximity p axis divided into 20 intervals. The values of proximity of each group, g,
correspond to those reflected in table 3: 0.5-0.8 for spheres, 0.3 for sheets and 0.1
for cylinders. The integral below the pdf for each group corresponds to the value of
the area coverage of the cylinders in the proximity sense shown in table 3: 0.3 for
spheres, 0.6 for sheets and 0.1 for other cylinders. Note that the histogram for the
spheres (p € [0.5 — 0.8]) has been approximated by a constant value throughout the
7 intervals it spans, (0.3/(7 - 0.05)), for simplicity.
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